๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ : ๐“๐ก๐ž ๐„๐ง๐ ๐ข๐ง๐ž ๐“๐ก๐š๐ญ ๐“๐ซ๐š๐ง๐ฌ๐Ÿ๐จ๐ซ๐ฆ๐ฌ ๐ƒ๐š๐ญ๐š ๐ข๐ง๐ญ๐จ ๐€๐ˆโฃโฃ Wisdom

You are currently viewing ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ : ๐“๐ก๐ž ๐„๐ง๐ ๐ข๐ง๐ž ๐“๐ก๐š๐ญ ๐“๐ซ๐š๐ง๐ฌ๐Ÿ๐จ๐ซ๐ฆ๐ฌ ๐ƒ๐š๐ญ๐š ๐ข๐ง๐ญ๐จ ๐€๐ˆโฃโฃ Wisdom

In the last article, I discussed the importance of data. Whileโฃโฃ

data provide the necessary foundation for AI. ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐ข๐ฌโฃโฃ

๐ฅ๐ข๐ค๐ž ๐ญ๐ก๐ž ๐ ๐ซ๐จ๐ฐ๐ญ๐ก ๐ฉ๐ซ๐จ๐œ๐ž๐ฌ๐ฌ ๐จ๐Ÿ ๐€๐ˆ. Just like a child learns fromโฃโฃ

experiences to make better decisions, machine learning enablesโฃโฃ

computers to learn from data and improve over time withoutโฃโฃ

being explicitly programmed for every task.โฃโฃ

โฃ

It’s important to understand that Machine Learning is not aโฃโฃ

silver bullet that can solve every problem. It’s a tool โ€”โฃโฃ

๐ฉ๐จ๐ฐ๐ž๐ซ๐Ÿ๐ฎ๐ฅ ๐›๐ฎ๐ญ ๐ซ๐ž๐ฅ๐ข๐š๐ง๐ญ ๐จ๐ง ๐ก๐ฎ๐ฆ๐š๐ง ๐ ๐ฎ๐ข๐๐š๐ง๐œ๐ž ๐š๐ง๐ ๐ž๐ฑ๐ฉ๐ž๐ซ๐ญ๐ข๐ฌ๐ž. It’s not AIโฃโฃ

itself but a subset, an approach to achieving AI.โฃโฃ

โฃโฃ

One common myth is that ML can learn anything on its own. Inโฃโฃ

reality, ๐Œ๐‹ ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ซ๐ž๐ช๐ฎ๐ข๐ซ๐ž ๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž๐ ๐ ๐ฎ๐ข๐๐š๐ง๐œ๐ž ๐ญ๐จ ๐ฅ๐ž๐š๐ซ๐ง. Theyโฃโฃ

can’t simply be fed raw data and be expected to understand itโฃโฃ

in the way we humans do.โฃโฃ

โฃโฃ

Machine learning ๐ฌ๐ญ๐š๐ซ๐ญ๐ž๐ ๐ฐ๐ข๐ญ๐ก ๐ฌ๐ข๐ฆ๐ฉ๐ฅ๐ž ๐š๐›๐ข๐ฅ๐ข๐ญ๐ฒ ๐ญ๐จ ๐ซ๐ž๐œ๐จ๐ ๐ง๐ข๐ณ๐ž ๐ฉ๐š๐ญ๐ญ๐ž๐ซ๐งโฃโฃ

recognition based on the theory that computers can learnโฃโฃ

without being programmed to perform specific tasks. โฃโฃ

โฃโฃ

Early successful application of this simple ability Arthur Samuel’sโฃโฃ

๐œ๐ก๐ž๐œ๐ค๐ž๐ซ๐ฌ-๐ฉ๐ฅ๐š๐ฒ๐ข๐ง๐  ๐ฉ๐ซ๐จ๐ ๐ซ๐š๐ฆ and the first neural networks. Over theโฃโฃ

decades, as computing power has surged and data has becomeโฃโฃ

more abundant, ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐ก๐š๐ฌ ๐ ๐ซ๐จ๐ฐ๐ง ๐ข๐ง ๐ฌ๐จ๐ฉ๐ก๐ข๐ฌ๐ญ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐š๐ง๐โฃโฃ

๐œ๐š๐ฉ๐š๐›๐ข๐ฅ๐ข๐ญ๐ฒ.โฃโฃ

โฃโฃ

As I mentioned in the previous article, data is the foundationโฃโฃ

of AI. So, the Potential Pitfalls in Machine Learning, that is,โฃโฃ

when things can go wrong, is when you feed machine learningโฃโฃ

incomplete, or bad data. ๐“๐ก๐ž ๐ข๐๐ž๐š ๐จ๐Ÿ ๐ ๐š๐ซ๐›๐š๐ ๐ž ๐ข๐ง, ๐ ๐š๐ซ๐›๐š๐ ๐ž ๐จ๐ฎ๐ญ, ๐ข๐ฌโฃโฃ

๐ฆ๐จ๐ซ๐ž ๐ญ๐ก๐š๐ง ๐š ๐ง๐ข๐œ๐ž ๐ฌ๐š๐ฒ๐ข๐ง๐  ๐ข๐ง ๐€๐ˆ. ๐ˆ๐ญ ๐ข๐ฌ ๐ซ๐ž๐š๐ฅ. โฃโฃ

โฃโฃ

Biased data can produce biased models. Additionally, without โฃโฃ

proper validation, models might perform well in training but โฃโฃ

fail miserably in the real world. This is known as overfitting.โฃโฃ

โฃ

๐“๐ฒ๐ฉ๐ž๐ฌ ๐จ๐Ÿ ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ โฃโฃ

There are mainly three types: supervised learning, where theโฃโฃ

model learns from labeled data; unsupervised learning, where theโฃโฃ

model identifies patterns in data without preassigned labels;โฃโฃ

and reinforcement learning, where an agent learns to make decisionsโฃโฃ

by receiving rewards or penalties for actions.โฃโฃ

Let me give you some relatable examples:โฃโฃ

โฃโฃ

๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ : It’s like having a tutor who provides theโฃโฃ

answers while you’re learning. The algorithm is trained on aโฃโฃ

labeled dataset, which means it knows the outcome it shouldโฃโฃ

predict.โฃโฃ

โฃโฃ

๐”๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ : This is similar to self-study without anโฃโฃ

answer key. The algorithm tries to group or interpret dataโฃโฃ

without any prior knowledge of the results.โฃโฃ

โฃโฃ

๐‘๐ž๐ข๐ง๐Ÿ๐จ๐ซ๐œ๐ž๐ฆ๐ž๐ง๐ญ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ : Imagine learning to ride a bike. Youโฃโฃ

adjust your balance every time you lean too much to one sideโฃโฃ

to avoid falling. Similarly, reinforcement learning involves anโฃโฃ

algorithm learning from the outcomes of its actions, adjustingโฃโฃ

each time it makes a mistake.โฃโฃ

โฃโฃ

๐‡๐จ๐ฐ ๐ข๐ฌ ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐ซ๐ž๐ฅ๐š๐ญ๐ž๐ ๐ญ๐จ ๐€๐ˆ? Machine learning is theโฃโฃ

backbone of many AI systems you interact with daily โ€” fromโฃโฃ

the recommendations on Netflix to the voice recognition in yourโฃโฃ

smart phone. It’s crucial for developing AI that can adapt andโฃโฃ

improve without human intervention, making technology moreโฃโฃ

intuitive and efficient.โฃโฃ

Always remember that the ๐’’๐’–๐’‚๐’๐’Š๐’•๐’š ๐’๐’‡ ๐’…๐’‚๐’•๐’‚ ๐’Š๐’” ๐’Š๐’Ž๐’‘๐’๐’“๐’•๐’‚๐’๐’•. An MLโฃโฃ

model is only as good as the data it’s trained on. โฃโฃ

โฃโฃ

Imagine a beauty app that uses machine learning to suggest makeup andโฃโฃ

hairstyles. If it’s mostly trained on images of people with oneโฃโฃ

type of skin tone and body shape, ๐‘–๐‘ก ๐‘š๐‘–๐‘”โ„Ž๐‘ก ๐‘›๐‘œ๐‘ก ๐‘”๐‘–๐‘ฃ๐‘’ ๐‘”๐‘œ๐‘œ๐‘‘ ๐‘Ž๐‘‘๐‘ฃ๐‘–๐‘๐‘’โฃโฃ

๐‘ก๐‘œ ๐‘กโ„Ž๐‘œ๐‘ ๐‘’ ๐‘คโ„Ž๐‘œ ๐‘™๐‘œ๐‘œ๐‘˜ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก. This can make some users feel leftโฃโฃ

out or wrongly suggest that there’s only one way to be beautiful.โฃโฃ

โฃโฃ

This shows why it’s important for these apps to learn from aโฃโฃ

diverse range of people’s pictures, so everyone gets suggestionsโฃโฃ

that work for them and feel included. Ethical considerationsโฃโฃ

should be at the forefront when designing ML systems โ€” ๐ฐ๐ž ๐ฆ๐ฎ๐ฌ๐ญโฃโฃ

๐ž๐ง๐ฌ๐ฎ๐ซ๐ž ๐ญ๐ก๐ž๐ฒ ๐š๐ซ๐ž ๐Ÿ๐š๐ข๐ซ ๐š๐ง๐ ๐๐จ ๐ง๐จ๐ญ ๐ฉ๐ž๐ซ๐ฉ๐ž๐ญ๐ฎ๐š๐ญ๐ž ๐ž๐ฑ๐ข๐ฌ๐ญ๐ข๐ง๐  ๐›๐ข๐š๐ฌ๐ž๐ฌ.โฃโฃ

โฃโฃ

๐‹๐ž๐ญ ๐ฆ๐ž ๐ฅ๐ž๐š๐ฏ๐ž ๐ฒ๐จ๐ฎ ๐ฐ๐ข๐ญ๐ก ๐ญ๐ก๐ข๐ฌ: Machine Learning is an exciting andโฃโฃ

a rapidly evolving field. As part of AI, it represents our ๐ฃ๐จ๐ฎ๐ซ๐ง๐ž๐ฒโฃโฃ

๐ญ๐จ๐ฐ๐š๐ซ๐๐ฌ ๐œ๐ซ๐ž๐š๐ญ๐ข๐ง๐  ๐ฆ๐š๐œ๐ก๐ข๐ง๐ž๐ฌ ๐ญ๐ก๐š๐ญ ๐œ๐š๐ง ๐ง๐จ๐ญ ๐จ๐ง๐ฅ๐ฒ ๐Ÿ๐จ๐ฅ๐ฅ๐จ๐ฐ ๐ข๐ง๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ข๐จ๐ง๐ฌโฃโฃ

๐›๐ฎ๐ญ ๐ฅ๐ž๐š๐ซ๐ง ๐š๐ง๐ ๐š๐๐š๐ฉ๐ญ. โฃWhether you’re just starting out orโฃโฃ

deepening your knowledge, remember that ML is a tool that,โฃโฃ

when used with care and understanding, holds the potential toโฃโฃ

greatly advance the way we interact with the world around us.

Leave a Reply