In the last article, I discussed the importance of data. Whileโฃโฃ
data provide the necessary foundation for AI. ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐ข๐ฌโฃโฃ
๐ฅ๐ข๐ค๐ ๐ญ๐ก๐ ๐ ๐ซ๐จ๐ฐ๐ญ๐ก ๐ฉ๐ซ๐จ๐๐๐ฌ๐ฌ ๐จ๐ ๐๐. Just like a child learns fromโฃโฃ
experiences to make better decisions, machine learning enablesโฃโฃ
computers to learn from data and improve over time withoutโฃโฃ
being explicitly programmed for every task.โฃโฃ
โฃ
It’s important to understand that Machine Learning is not aโฃโฃ
silver bullet that can solve every problem. It’s a tool โโฃโฃ
๐ฉ๐จ๐ฐ๐๐ซ๐๐ฎ๐ฅ ๐๐ฎ๐ญ ๐ซ๐๐ฅ๐ข๐๐ง๐ญ ๐จ๐ง ๐ก๐ฎ๐ฆ๐๐ง ๐ ๐ฎ๐ข๐๐๐ง๐๐ ๐๐ง๐ ๐๐ฑ๐ฉ๐๐ซ๐ญ๐ข๐ฌ๐. It’s not AIโฃโฃ
itself but a subset, an approach to achieving AI.โฃโฃ
โฃโฃ
One common myth is that ML can learn anything on its own. Inโฃโฃ
reality, ๐๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ซ๐๐ช๐ฎ๐ข๐ซ๐ ๐ฌ๐ญ๐ซ๐ฎ๐๐ญ๐ฎ๐ซ๐๐ ๐ ๐ฎ๐ข๐๐๐ง๐๐ ๐ญ๐จ ๐ฅ๐๐๐ซ๐ง. Theyโฃโฃ
can’t simply be fed raw data and be expected to understand itโฃโฃ
in the way we humans do.โฃโฃ
โฃโฃ
Machine learning ๐ฌ๐ญ๐๐ซ๐ญ๐๐ ๐ฐ๐ข๐ญ๐ก ๐ฌ๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐๐ข๐ฅ๐ข๐ญ๐ฒ ๐ญ๐จ ๐ซ๐๐๐จ๐ ๐ง๐ข๐ณ๐ ๐ฉ๐๐ญ๐ญ๐๐ซ๐งโฃโฃ
recognition based on the theory that computers can learnโฃโฃ
without being programmed to perform specific tasks. โฃโฃ
โฃโฃ
Early successful application of this simple ability Arthur Samuel’sโฃโฃ
๐๐ก๐๐๐ค๐๐ซ๐ฌ-๐ฉ๐ฅ๐๐ฒ๐ข๐ง๐ ๐ฉ๐ซ๐จ๐ ๐ซ๐๐ฆ and the first neural networks. Over theโฃโฃ
decades, as computing power has surged and data has becomeโฃโฃ
more abundant, ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐ก๐๐ฌ ๐ ๐ซ๐จ๐ฐ๐ง ๐ข๐ง ๐ฌ๐จ๐ฉ๐ก๐ข๐ฌ๐ญ๐ข๐๐๐ญ๐ข๐จ๐ง ๐๐ง๐โฃโฃ
๐๐๐ฉ๐๐๐ข๐ฅ๐ข๐ญ๐ฒ.โฃโฃ
โฃโฃ
As I mentioned in the previous article, data is the foundationโฃโฃ
of AI. So, the Potential Pitfalls in Machine Learning, that is,โฃโฃ
when things can go wrong, is when you feed machine learningโฃโฃ
incomplete, or bad data. ๐๐ก๐ ๐ข๐๐๐ ๐จ๐ ๐ ๐๐ซ๐๐๐ ๐ ๐ข๐ง, ๐ ๐๐ซ๐๐๐ ๐ ๐จ๐ฎ๐ญ, ๐ข๐ฌโฃโฃ
๐ฆ๐จ๐ซ๐ ๐ญ๐ก๐๐ง ๐ ๐ง๐ข๐๐ ๐ฌ๐๐ฒ๐ข๐ง๐ ๐ข๐ง ๐๐. ๐๐ญ ๐ข๐ฌ ๐ซ๐๐๐ฅ. โฃโฃ
โฃโฃ
Biased data can produce biased models. Additionally, without โฃโฃ
proper validation, models might perform well in training but โฃโฃ
fail miserably in the real world. This is known as overfitting.โฃโฃ
โฃ
๐๐ฒ๐ฉ๐๐ฌ ๐จ๐ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ โฃโฃ
There are mainly three types: supervised learning, where theโฃโฃ
model learns from labeled data; unsupervised learning, where theโฃโฃ
model identifies patterns in data without preassigned labels;โฃโฃ
and reinforcement learning, where an agent learns to make decisionsโฃโฃ
by receiving rewards or penalties for actions.โฃโฃ
Let me give you some relatable examples:โฃโฃ
โฃโฃ
๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ : It’s like having a tutor who provides theโฃโฃ
answers while you’re learning. The algorithm is trained on aโฃโฃ
labeled dataset, which means it knows the outcome it shouldโฃโฃ
predict.โฃโฃ
โฃโฃ
๐๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ : This is similar to self-study without anโฃโฃ
answer key. The algorithm tries to group or interpret dataโฃโฃ
without any prior knowledge of the results.โฃโฃ
โฃโฃ
๐๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐๐๐๐ซ๐ง๐ข๐ง๐ : Imagine learning to ride a bike. Youโฃโฃ
adjust your balance every time you lean too much to one sideโฃโฃ
to avoid falling. Similarly, reinforcement learning involves anโฃโฃ
algorithm learning from the outcomes of its actions, adjustingโฃโฃ
each time it makes a mistake.โฃโฃ
โฃโฃ
๐๐จ๐ฐ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐ซ๐๐ฅ๐๐ญ๐๐ ๐ญ๐จ ๐๐? Machine learning is theโฃโฃ
backbone of many AI systems you interact with daily โ fromโฃโฃ
the recommendations on Netflix to the voice recognition in yourโฃโฃ
smart phone. It’s crucial for developing AI that can adapt andโฃโฃ
improve without human intervention, making technology moreโฃโฃ
intuitive and efficient.โฃโฃ
Always remember that the ๐๐๐๐๐๐๐ ๐๐ ๐ ๐๐๐ ๐๐ ๐๐๐๐๐๐๐๐๐. An MLโฃโฃ
model is only as good as the data it’s trained on. โฃโฃ
โฃโฃ
Imagine a beauty app that uses machine learning to suggest makeup andโฃโฃ
hairstyles. If it’s mostly trained on images of people with oneโฃโฃ
type of skin tone and body shape, ๐๐ก ๐๐๐โ๐ก ๐๐๐ก ๐๐๐ฃ๐ ๐๐๐๐ ๐๐๐ฃ๐๐๐โฃโฃ
๐ก๐ ๐กโ๐๐ ๐ ๐คโ๐ ๐๐๐๐ ๐๐๐๐๐๐๐๐๐ก. This can make some users feel leftโฃโฃ
out or wrongly suggest that there’s only one way to be beautiful.โฃโฃ
โฃโฃ
This shows why it’s important for these apps to learn from aโฃโฃ
diverse range of people’s pictures, so everyone gets suggestionsโฃโฃ
that work for them and feel included. Ethical considerationsโฃโฃ
should be at the forefront when designing ML systems โ ๐ฐ๐ ๐ฆ๐ฎ๐ฌ๐ญโฃโฃ
๐๐ง๐ฌ๐ฎ๐ซ๐ ๐ญ๐ก๐๐ฒ ๐๐ซ๐ ๐๐๐ข๐ซ ๐๐ง๐ ๐๐จ ๐ง๐จ๐ญ ๐ฉ๐๐ซ๐ฉ๐๐ญ๐ฎ๐๐ญ๐ ๐๐ฑ๐ข๐ฌ๐ญ๐ข๐ง๐ ๐๐ข๐๐ฌ๐๐ฌ.โฃโฃ
โฃโฃ
๐๐๐ญ ๐ฆ๐ ๐ฅ๐๐๐ฏ๐ ๐ฒ๐จ๐ฎ ๐ฐ๐ข๐ญ๐ก ๐ญ๐ก๐ข๐ฌ: Machine Learning is an exciting andโฃโฃ
a rapidly evolving field. As part of AI, it represents our ๐ฃ๐จ๐ฎ๐ซ๐ง๐๐ฒโฃโฃ
๐ญ๐จ๐ฐ๐๐ซ๐๐ฌ ๐๐ซ๐๐๐ญ๐ข๐ง๐ ๐ฆ๐๐๐ก๐ข๐ง๐๐ฌ ๐ญ๐ก๐๐ญ ๐๐๐ง ๐ง๐จ๐ญ ๐จ๐ง๐ฅ๐ฒ ๐๐จ๐ฅ๐ฅ๐จ๐ฐ ๐ข๐ง๐ฌ๐ญ๐ซ๐ฎ๐๐ญ๐ข๐จ๐ง๐ฌโฃโฃ
๐๐ฎ๐ญ ๐ฅ๐๐๐ซ๐ง ๐๐ง๐ ๐๐๐๐ฉ๐ญ. โฃWhether you’re just starting out orโฃโฃ
deepening your knowledge, remember that ML is a tool that,โฃโฃ
when used with care and understanding, holds the potential toโฃโฃ
greatly advance the way we interact with the world around us.